冯钰课题组在Nature Plants发文揭示植物microRNA加工的分子机制

来源 : 基础医学系     发布时间 :2021-10-02    浏览次数 :3227

2021930日,澳门·新葡萄新京6663、澳门·新葡萄新京6663医学院附属邵逸夫医院冯钰课题组在Nature Plants在线发表了题为“Structural basis of microRNA processing by Dicer-like 1”的研究论文,该研究首次解析了拟南芥Dicer-like 1DCL1)与底物RNA的复合物冷冻电镜结构,揭示了植物microRNA加工的分子机制,并为人类microRNA加工的机制研究提供了新的见解。

MicroRNA是真核生物中广泛存在的一类非编码 RNA,它们通过结合靶基因mRNA抑制靶基因表达,从而参与真核生物基因表达调控。在动物中,由RNA聚合酶II转录产生microRNA初始转录产物pri-miRNA,其在细胞核内被Drosha切割产生microRNA前体pre-miRNA;运输到细胞质后,pre-miRNADicer切割从而产生成熟的microRNA。在植物中,上述两步切割均由DCL1在细胞核内完成。DCL1具有与Dicer相似的结构域,那么它如何识别pri-miRNApre-miRNA并依次执行两步切割?为了回答这些问题,作者利用冷冻电镜单颗粒三维重构的方法,分别解析了拟南芥DCL1pri-miRNApre-miRNA的复合物结构(图1)。   

1 DCL1-pri-miRNA(上)和DCL1-pre-miRNA(下)的结构

基于结构分析和生化实验验证,文章提出了植物microRNA加工的模型(图2)。首先,DCL1PAZ结构域识别并结合pri-miRNA的单链区;同时,解旋酶结构域和DUF283结构域夹住pri-miRNA的双链区;然后,pri-miRNA的切割位点在dsRBD1结构域的协助下与RNase III活性中心对齐,执行第一步切割。完成第一步切割后,生成的pre-miRNAATP提供动力转位到PAZ结构域,再次将切割位点与RNase III活性中心对齐,从而执行第二步切割。

2 植物microRNA加工的模型

2018年,Cell杂志报道了人类Dicer-pre-miRNA复合物的冷冻电镜结构(Liu et al., 2018)。出乎意料的是,结构中pre-miRNA远离RNase III活性中心,暗示其并非切割状态的结构。通过比较DCL1-pre-miRNADicer-pre-miRNA的结构发现,DCL1的解旋酶结构域相对于Dicer的解旋酶结构域旋转了67°,因此作者推测Dicer的解旋酶结构域可能会发生巨大的构象变化并像DCL1一样夹住pre-miRNA从而完成切割。

澳门·新葡萄新京6663博士后卫晓彬、博士研究生柯欢欢为该研究的共同第一作者,澳门·新葡萄新京6663冯钰研究员为该研究的通讯作者。该研究的冷冻电镜工作全部在澳门·新葡萄新京6663冷冻电镜中心完成,也得到了澳门·新葡萄新京6663冷冻电镜中心高性能计算平台和医学院蛋白质平台支持。